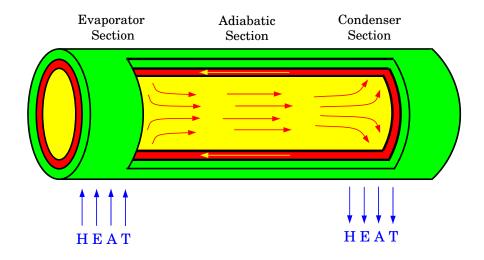
Transient Thermohydraulic Heat Pipe Modeling: Incorporating THROHPUT into the CÆSAR Environment

Michael L. Hall

Coupled MultiPhysics Team Leader
P.O. Box 1663, MS-D409
Los Alamos National Laboratory
Los Alamos, New Mexico 87545 USA
Email: hall@lanl.gov

Presentation to the Space Technology and Applications International Forum (STAIF-2003)


2 / 5 / 2003

This presentation and additional information can be found on the THROHPUT home page at http://www.lanl.gov/THROHPUT or http://THROHPUT.com

Outline

- The THROHPUT Code
 - Modeled Phenomena
 - Numerical Models
 - Main Equation Set
 - Later Modifications
- Results
- Cæsar Computational Physics Environment
- THROHPUT Future Work

Heat Pipe Modeling – The THROHPUT Code

- THROHPUT stands for Thermal Hydraulic Response Of Heat Pipes Under Transients
- Developed as a Research Code for my Ph. D. Thesis
- Initial Problem:
 - Cylindrical Lithium Heat Pipe (SP-100)
 - Three Phases of Lithium & Noncondensable Gas
 - Molybdenum Wall

- Sintered or Annular Screen Wick
- Startup from a Frozen State to Steady State Operation
- Space-based or Terrestrial

THROHPUT Capabilities: Modeled Phenomena

- Radial and Axial Convection
- Radial and Axial Conduction
- Mass & Heat Transfer at Wick Surface
- Surface Tension (Capillary Pressure) via separate gas and liquid pressures
- Liquid Recession into the Wick
- Pooling into the Core
- Axial Diffusion and Effusion

THROHPUT Capabilities: Numerical Models

- Main Equation Set
 - Area-Averaged Navier Stokes Equations
 - Fully-Implicit Transient Solution via a Newton Iteration
- Auxiliary Models
 - Parabolic Radial Temperature Distribution
 - Two Capillary Pressure Models
 - Radial and Axial Melt Front Propagation
 - Diffusion Dusty Gas Model
 - All auxiliary models solved implicitly with main equation set

Main Equation Set Color Key

Time Derivative terms

Convective terms

Interphasic/Intercomponent Transfer terms

Diffusion terms

PdV-like terms

Conduction terms

 $\overrightarrow{\nabla}P$ terms
Friction terms
Body Force terms

Main Equation Set: Mass Conservation

Mixture of Gases Continuity:

$$\frac{\partial}{\partial t} \left(\alpha_{m} \rho_{m} \right) + \frac{\partial}{\partial z} \left(\alpha_{m} \rho_{m} V_{m} \right) = \sum_{x=l,s} \Gamma_{xg}$$

Noncondensable Gas Continuity:

$$\frac{\partial}{\partial t} \left(\alpha_m \rho_m X_n \right) + \frac{\partial}{\partial z} \left(\alpha_m \rho_m X_n V_m \right) = \frac{\partial}{\partial z} \left(\alpha_m D_n^X \frac{\partial X_n}{\partial z} \right) + \frac{\partial}{\partial z} \left(\alpha_m D_n^\rho \frac{\partial \rho_m}{\partial z} \right)$$

Liquid Continuity:

$$\epsilon_v \frac{\partial}{\partial t} \left(\alpha_l \rho_l \right) + \epsilon_v \frac{\partial}{\partial z} \left(\alpha_l \rho_l V_l \right) = \sum_{x=g,s} \Gamma_{xl}$$

Solid Continuity:

$$\epsilon_v \frac{\partial}{\partial t} \left(\alpha_s \rho_s \right) = \sum_{x=g,l} \Gamma_{xs}$$

Main Equation Set: Energy Conservation

Mixture of Gases Internal Energy:

$$\begin{split} \frac{\partial}{\partial t} \left(\alpha_{m} \rho_{m} U_{m} \right) + \frac{\partial}{\partial z} \left(\alpha_{m} \rho_{m} U_{m} V_{m} \right) &= -P_{m} \left(\frac{\partial}{\partial z} \left(\alpha_{m} V_{m} \right) + \frac{\partial}{\partial t} \right) + \frac{\partial}{\partial z} \left(\alpha_{m} k_{m} \frac{\partial T_{m}}{\partial z} \right) \\ &+ \frac{\partial}{\partial z} \left(\alpha_{m} D_{n}^{X} \left(h_{n} - h_{g} \right) \frac{\partial X_{n}}{\partial z} \right) + \frac{\partial}{\partial z} \left(\alpha_{m} D_{n}^{\rho} \left(h_{n} - h_{g} \right) \frac{\partial \rho_{m}}{\partial z} \right) + \sum_{r=l,s} \left(Q_{xm} + Q_{xg}^{\Gamma} \right) \end{split}$$

Liquid Internal Energy:

$$\epsilon_{v} \frac{\partial}{\partial t} \left(\alpha_{l} \rho_{l} U_{l} \right) + \epsilon_{v} \frac{\partial}{\partial z} \left(\alpha_{l} \rho_{l} U_{l} V_{l} \right) = -\epsilon_{v} P_{l} \left(\frac{\partial \alpha_{l} V_{l}}{\partial z} + \frac{\partial \alpha_{l}}{\partial t} \right) + \epsilon_{v} \frac{\partial}{\partial z} \left(\alpha_{l} k_{l} \frac{\partial T_{l}}{\partial z} \right) \\
+ \sum_{x=m,s,w} Q_{xl} + \sum_{x=g,s} Q_{xl}^{\Gamma}$$

Solid Internal Energy:

$$\epsilon_{v} \frac{\partial}{\partial t} \left(\alpha_{s} \rho_{s} U_{s} \right) = \epsilon_{v} \frac{\partial}{\partial z} \left(\alpha_{s} k_{s} \frac{\partial T_{s}}{\partial z} \right) + \sum_{x=m,l,w} Q_{xs} + \sum_{x=q,l} Q_{xs}^{\Gamma}$$

Wall Internal Energy:

$$ho_w c_{p_w} rac{\partial T_w}{\partial t} = rac{\partial}{\partial z} \left(lpha_w k_w rac{\partial T_w}{\partial z}
ight) + Q_{in} + \sum_{x=l,s} Q_{xw}$$

Main Equation Set: Momentum Conservation

Mixture of Gases Momentum:

$$\frac{\partial}{\partial t} \left(\alpha_m \rho_m V_m \right) + \frac{\partial}{\partial z} \left(\alpha_m \rho_m V_m^2 \right) = -\alpha_m \frac{\partial P_m}{\partial z} - \mathcal{F}_m V_m + \alpha_m \rho_m g_z$$

Liquid Momentum:

$$\epsilon_{v} \frac{\partial}{\partial t} \left(\alpha_{l} \rho_{l} V_{l} \right) + \epsilon_{v} \frac{\partial}{\partial z} \left(\alpha_{l} \rho_{l} V_{l}^{2} \right) = -\epsilon_{v} \alpha_{l} \frac{\partial P_{l}}{\partial z} - \mathcal{F}_{l} V_{l} + \epsilon_{v} \alpha_{l} \rho_{l} g_{z}$$

Main Equation Set: Constitutive Equations

Mixture State: $P_{m} = \rho_{m} T_{m} \left(X_{n} R_{n} + (1 - X_{n}) R_{g} \right)$

Liquid State: $\rho_l = \rho_l (P_l, T_l)$

Solid State: $\rho_{s} = \rho_{s} (T_{s})$

Volume Fraction Sum: $\sum_{x=m,l,s} \alpha_x = 1$

Capillary Pressure Relation: $P_m - P_l = \mathcal{L} \left(\Delta P_{cap} \left(\alpha_m \right) \right)$

Grand total of 15 equations, 15 unknowns at each node.

System variables are:

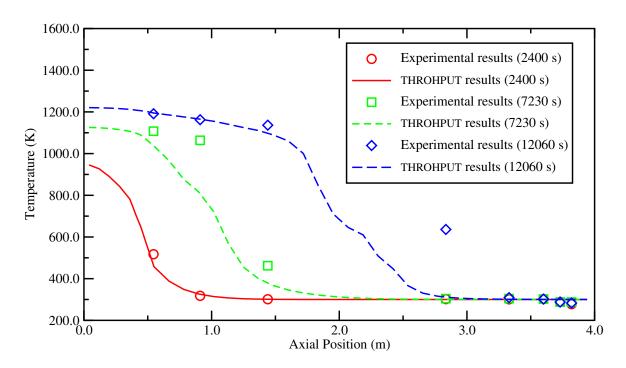
 $\rho_m, \rho_l, \rho_s, X_n, \alpha_m, \alpha_l, \alpha_s, P_m, P_l, V_m, V_l, T_m, T_l, T_s \text{ and } T_w.$

The interphase transfer terms $(\Gamma_{xy}, Q_{xy}, Q_{xy}^{\Gamma})$ are all functions of $\rho_m, X_n, T_m, T_l, T_s$, and T_w and are defined implicitly in the Radial Model.

Later Modifications

- Added additional fluids: potassium, sodium, mercury and silver
- Some problems matching experiments Kinetic evaporation/condensation model to blame? No . . .
- Determined problem: liquid in tension (negative liquid pressure) was not being allowed by the code see research by Berthelot

Berthelot's Experiment


France, 1850

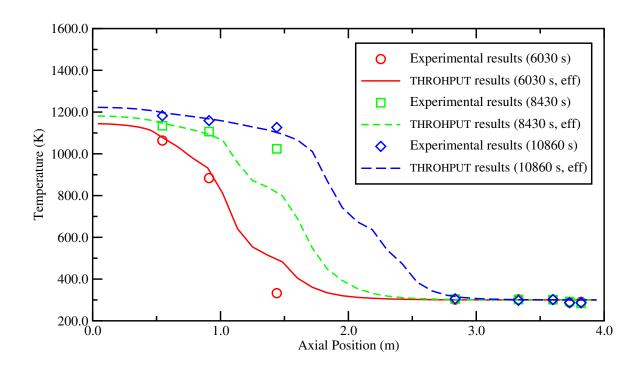
Results: Problem Description

- LANL SPAR-8 heat pipe (3/8/85 test by Merrigan, Keddy and Sena)
- Lithium working fluid, Molybdenum pipe
- Lengths: 4.0 m total
 - 0.40 m evaporator
 - -0.09 m adiabatic
 - 3.51 m condenser
- Outside radius ≈ 1 cm
- Annular wick
- Initially frozen solid at 300 K
- Only heat output data available from experiment

Results: SPAR-8 Experimental Comparison

Only heat output data available from experiment, so

heat output used as heat input in the model.


Why this assumption is realistic:

- Time history is similar
- Heat inputs are roughly the right scale

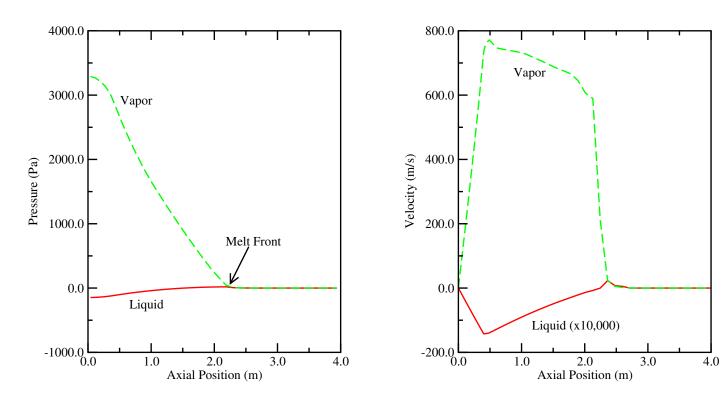
Why this assumption is not accurate:

- Time lag due to stored heat in the heat pipe
- Time lag becomes larger at later times more heat storage

Results: SPAR-8 Experimental Comparison

To correct for time lag problems, use the same model run, but set time-integrated heat output to the experimental value.

Why this assumption is realistic:


• Heat outputs are the same for both

Why this assumption is not accurate:

• Timing is still incorrect

This gives better agreement later in the transient, but early time agreement degrades.

Results: SPAR-8 Pressure & Velocity Distributions at 13,260 s (3.68 hrs)

- Time is at end of transient
- Note negative pressure distribution maximum liquid tension is -150 Pa
- Liquid velocity should be $53000 \times \text{vapor velocity for steady state} \text{true for the model}$

Cæsar Computational Physics Environment: Coding Characteristics

- Written in Fortran-95, preprocessed by Gnu m4.
- Object-based
- Parallel and serial versions, designed in from the beginning
- Completely levelized design no dependency loops between classes or modules.
- Uses Design by Contract to verify the behavior of all procedures
- Uses extensive unit testing to certify all classes
- Uses the ideas of literate programming to generate documentation (in HTML, PostScript and PDF) from comments included in the code, via the Document Package (http://www.lanl.gov/Document).
- http://www.lanl.gov/Caesar

Cæsar Computational Physics Environment: Numerical Modeling Characteristics

- Multiple mesh types (uniform, orthogonal, structured, unstructured, adaptive mesh refinement (AMR), triangular/tetrahedral, quadrilateral/hexahedral meshes)
- Multiple dimensions (1-D, 2-D and 3-D)
- Multiple geometries (cartesian, cylindrical and spherical)
- Multiple physics packages (diffusion, radiation transport, radiation hydrodynamics, fluid dynamics, magnetohydrodynamics and heat pipe thermal hydraulics)
- Multiple discretizations for partial differential equation terms
- Multiple external packages for linear solvers, communications, visualization, etc.

THROHPUT Future Work

- Production version of Throhput Incorporation into Cæsar
- Additional wick geometries (groove, arterial, slab)
- Arbitrary heat pipe cross-section (e.g. square)
- Two- or three-dimensional model
- Additional fluids and wall materials
- Entrainment model
- Graphical output
- User-specified heat pipe failure criteria
- Limit prediction (sonic, viscous, entrainment, capillary, boiling)